منابع مشابه
Gromov Hyperbolic Spaces
A mini monograph on Gromov hyperbolic spaces, which need not be geodesic or proper.
متن کاملActions of Certain Arithmetic Groups on Gromov Hyperbolic Spaces
We study the variety of actions of a fixed (Chevalley) group on arbitrary geodesic, Gromov hyperbolic spaces. In high rank we obtain a complete classification. In rank one, we obtain some partial results and give a conjectural picture.
متن کاملGromov Hyperbolic Spaces and the Sharp Isoperimetric Constant
In this article we exhibit the largest constant in a quadratic isoperimetric inequality which ensures that a geodesic metric space is Gromov hyperbolic. As a particular consequence we obtain that Euclidean space is a borderline case for Gromov hyperbolicity in terms of the isoperimetric function. We prove similar results for the linear filling radius inequality. Our theorems strengthen and gene...
متن کاملCharacterizations of Metric Trees and Gromov Hyperbolic Spaces
A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...
متن کاملCheeger Isoperimetric Constants of Gromov-hyperbolic Spaces with Quasi-poles
Let X be a non-compact complete manifold (or a graph) which admits a quasi-pole and has bounded local geometry. Suppose that X is Gromov-hyperbolic and the diameters (for a fixed Gromov metric) of the connected components of X(∞) have a positive lower bound. Under these assumptions we show that X has positive Cheeger isoperimetric constant. Examples are also constructed to show that the Cheeger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expositiones Mathematicae
سال: 2005
ISSN: 0723-0869
DOI: 10.1016/j.exmath.2005.01.010